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Preliminaries



MOTIVATION

What is representation theory?

- Representation theory is a branch of mathematics that studies
abstract algebraic structures by representing their elements as
linear transformations of vector spaces

- When such abstract algebraic object is being represented on a
finite-dimensional vector space, its elements are described by
matrices and its algebraic operations are described by matrix
addition and/or matrix multiplication

- Representation theory reduces abstract algebra problems to
linear algebra problems



MOTIVATION

Where is representation theory applied?

- Algebra and number theory

- Category theory

- Quantum physics: the theory of elementary particles and more
- Fourier analysis

- And much more!



GROUPS

Definition
A group (G, x) is a set G equipped with some binary operation
*x: GXG — G, (a,b) — ax* b that satisfies 3 conditions:

- Associativity: (a xb) xc=a*x (bxc) VYa,b,c €G

- Unitarity: 3e € G suchthatexa=a=axe Va e G (often we
denotee=1=1g)

- Invertibility: Ya € G 3b € G suchthataxb=eand bxa=c¢
(often we denote b =a~1)



GROUPS

Examples

- (Z,+), (k,4), (k* =k\ {0},), where k=Q,R,C

- (Z/nZ ={0,1,...,n—1},4)

- (GL, (k) = {A € M, (k) | A is invertible}, -)

+ (SO3(R) = {4 € GL3(R) | AAT =13 det A =1},-)

- Forany set X, (Sx = {¢: X — X | ¢ is bijective}, o); when
X={1,2,...,n}, we write Sx = S,

- For any k-vector space V,
(GLy(V) ={¢p: V > V| ¢ is k-linear and invertible}, o)



GROUPS

Definition
If (G,*) and (H, ) are groups, then a group morphism

p: (G,x) — (H,s)isamap p: G — H such that
p(axb)=p(a)ap(b)Va,b €G.
From the group axioms, one can deduce that p(1g) = 15 and
pla) =pa)™ VYaeG.
Examples
1 (R,+) > (C,+),a—a
s nw: (Z,+4) - (Z/nZ,+),a — a

© ¢: (G, %) = (8G,0),8 = pg, Where pg: a> g*a



GROUP ACTIONS

Definition

Let (G,*) be a group and X be a set. A group action of (G, *) on X
is a group morphism a: (G, ) — (Sx, o).

So what does this mean:

c a(lg) =idy, so a(lg)(x) =idx (x) =x forx € X
ca(gxh)=a(g)oa(h),soal(gxh)(x)=a(g)(a(h)(x)) forg,he G
andx e X

If we instead use g e x = a(g)(x), then the above conditions may be
more familiar:

clgex=xforxeX

- (gxh)yex=ge(hex)forg,heGandxeX



GROUP ACTIONS

Example

The group (D3, -), where
D3 ={1,a,a?,b,ab,a’b | a® = b®> = (ab)? = 1}, acts on the Triangle

by means of symmetry.

N

Figure 1: Symmetries of the Triangle



GROUP ACTIONS

Example

The group (SO3(R), -) acts on the vector space R3 via matrix
multiplication:

Ax eR3 for AeSO3(R), x e R3

The group (SO3(R), -) is known as ‘the 3D rotation group’ because it
is the group of all rotations about the origin of R3.

Moreover, this group action is R-linear, so this is our first example of
a ‘group representation’.



Representation Theory of Groups



GROUP REPRESENTATIONS

Definition

Let (G,*) be a group and V be a k-vector space. A representation
of (G,%) onV is a group morphism p: (G, *) — (GLy(V), o). We say
that the representation is finite-dimensional when dimy V < co.

So really, group representations are a special case of group actions.

If vV = k", then GLy(V) = GLi(k") = GL, (k).



GROUP REPRESENTATIONS

Examples
* triv: (G, *) — (GL¢(C),0) = (C*,), where triv(g) =1¥g € G
- x: (Z/nZ,+) — (GLc(C),0) = (C*,-), where y(m) = e27im/n
* ¢: (S3,0) = (GLc(C?),0) = (GLy(C), ), where

e((12) = 'O )

-1 -1 -1
; <p((123))=l1 Ol
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GROUP REPRESENTATIONS

Definition

Given two representations pi: (G, %) — (GLy(V1), o) and

p2: (G, %) = (GLy(V2),0), a morphism from p; to ps is a k-linear
map T: V, — Vs such that the following diagram commutes Vg € G:

v p1(g) v
Vo ——— Vs
p2(8)

If T is invertible, we say that T is an isomorphism from p; to p and

write pP1 = po.



GROUP REPRESENTATIONS

Proposition-Definition

Given two representations pi: (G, x) — (GLy(V;),0) and

p2: (G,x) — (GLy(V2),0), the map p1 ® p2: G — GLi(V1 @ Vo),
given by (p1 ® p2)(g)((v1,v1)) = (p1(g)(v1), p2(g)(v2)), determines
a representation of (G, ) on V; @ V5 called the direct sum

representation of p; and p-.

Given representations p1: (G, x) — (GL,,(k), ) and
p2: (G, %) = (GL,(Kk),-), their direct sum is the representation

P1® p2: (G, %) = (GLjuin(k),-), where

pi(g) 0

(p1®p2)(g) = 0 o5/(7)




GROUP REPRESENTATIONS

Example (Permutation Representation)
¥ (Sn,0) = (GLc(C"),0),0 = ¥, Where Yy (e;) = 5y and

e1,...,e, are the standard basis vectors of C"

The subspaces Vi =C(ey +-+-+e,) ={X; die; | 11 =--- = A, } and
Vo = {>; die; | X; 4; = 0} are invariant under ¢, Yo € S,,. Moreover,
Cr=vVieV

Therefore, ¢y, : (Sy,0) = (GL¢(V1),0),0 — ¥, and
Ulvy: (Sps0) = (GLc(V2),0), 0 — ¢, are group representations as
well

In particular, ¥ = ¢y, ® ¢y,
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GROUP REPRESENTATIONS

Definition
Given a representation p: (G, x) — (GLy(V), o) and a subspace W
of V, we say W is (G, x)-invariant if p(g)W C W Vg € G.

In this case, there is an induced representation
plw : (G, %) — (GLy(W), o) given by plw (g) = p(g).
Definition

A (non-zero) representation p: (G, *) — (GLy(V), o) is irreducible
if the only (G, x)-invariant subspaces of V are {0} and V.



GROUP REPRESENTATIONS

Example (Permutation Representation)
¥ (Sp,0) = (GLc(C),0),0 = ¥, Where ¢ (e;) = eq(;) and
e1,...,e, are the standard basis vectors of C”

The subspaces Vi = C(ey +-+-+e,) ={X; die; | 11 =--- =4, } and
Vo ={X;die; | X; 4 = 0} are (S, o)-invariant

Moreover, the representations ¢y, : (S,, o) — (GL¢(V1),0) and
Ulvy: (Sn,0) = (GLc(Va), o) are irreducible

So we have a decomposition into irreducibles: ¥ = ¥y, ® ¥|v,
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GROUP REPRESENTATIONS

Definition

A representation p: (G, *) — (GLy(V), o) is semisimple if there
exists a decomposition V=V, & --- & V,, where each V; is

(G, %)-invariant and each ply, is irreducible (Vi = 1,...,n)

Theorem (Maschke)

Every (finite-dimensional) representation of a finite group is
semisimple (assuming char k 1 |G|).

So: classifying all possible irreducible (fin-dim) representations of a
finite group (G, %) (up to isomorphism) will classify all possible
(fin-dim) representations (up to isomorphism)



GROUP REPRESENTATIONS

Example
Setting w, = e2™/", then xi: (Z/nZ,+) — (C*,),m — wi™ isa
representation for each k =1,...,n — 1. The representations

X0 - - -» xn—1 Classify the distinct irreducible representations of
(Z/nZ,+) up to isomorphism.



GROUP REPRESENTATIONS

Theorem

Let {pi: (G,x) = (GLy(V;),0)}i=1....» be all the distinct irreducible
representations of a finite group (G, x) up to isomorphism and let
d; = dimy V;. Then

|G| =d? + - +d>.
Moreover, d; | |G| foreachi=1,...,n.

Theorem

The number of all distinct irreducible representations of a finite
group (G, %) (up to isomorphism) is equal to the number of
conjugacy classes of (G, x).
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GROUP REPRESENTATIONS

Definition

The tensor product of two k-vector spaces V and W is the new
k-vector space V@ W =span, {vew |v eV, w e W}, where
(=) ® (-) is k-bilinear:

(/11\/1 +/12V2) Rw = /ll(vl ® W) +/12(V2 ® W),
Ve (w1 +Aawsz) = A1 (v @ wy) + A2 (v @ wa),

where v,vi,va € V,w,wi,wg € W, 41,45 € k.

If V has basis {a1,...,a,,} and W has basis {b1,...,b,},then Ve W
hasbasis{a; ®b; |i=1,...,m, j=1,...,n}
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GROUP REPRESENTATIONS

Proposition-Definition

Given two representations pi: (G, %) — (GLy(V1), o) and

p2: (G, %) — (GLy(V2),0), the map p1 ® pa: G — GLi (V1 ® Vs),
given by (p1 ® p2)(8)((v1 ® v2)) = p1(g)(v1) ® p2(g)(v2), determines
a representation of (G, ) on V; ® V, called the tensor product
representation of p; and p-.
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GROUP REPRESENTATIONS

A famous theorem in group theory proven using representation
theory (no alternative proof was found until the 1970’s):

Burnside’s Theorem

Let (G, %) be a group of order p®¢?, where p and ¢ are prime. Then
(G, x) is solvable.
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GROUP REPRESENTATIONS

The dream:

- Classify all irreducible representations

- There has been success with more well-understood algebraic
objects when restricting to finite-dimensional representations

- What about for infinite dimensional representations? Not really

23



Representation Theory of
Associative Algebras




ALGEBRA REPRESENTATIONS

So, what next?

Definition
A (unital, associative) k-algebra A = (4, +, -) is a k-vector space
(A, +) such that:
- deeAsuchthate-a=a=a-eVa e A (usually, we denote
e=1,4=1)
 Aa-b)=(a)-b=a-(Ab) VYa,b € A, VYA € k
(a-b)-c=a-(b-c)Va,b,ce A
ca-(b+c)=(a-b)+(a-c)Va,b,c e A
s (b+c)-a=(b-a)+(c-a)VYa,b,c € A
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ALGEBRA REPRESENTATIONS

Examples
- (k,+,-) is a k-algebra
- The polynomial ring (k[x1,...,x,],+, ) is a k-algebra
- For a group (G, %), the group algebra (k[G], +, x) is a k-algebra

- For a complex Lie algebra g, the universal enveloping algebra
(U(g),+,-) is a C-algebra

- For a k-vector space, (Endy (V) = {¢: V = V| ¢ is k-linear}, +, o)
is a k-algebra

+ (M, (k),+,0) is a k-algebra
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ALGEBRA REPRESENTATIONS

Definition
If (A,+,-) and (B, +,-) are k-algebras, then an algebra morphism
p: (A, +,) > (B,+,-) is a k-linear map p: A — B such that

cp(la) =1p
+ plaraz) = p(ar)p(az) Yai,az € A

Definition

Let (A, +,) be a k-algebra and V be a k-vector space. A
representation of (A,+,-) on V is an algebra morphism
p: (A +,) = (Endg(V),+, o).
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ALGEBRA REPRESENTATIONS

An algebra rep ¢: (A, +,-) — (Endy(V),+,0) = Vis a (left) A-module
A group rep p: (G, %) — (GLy(V),0) = Visa (left) k[G]-module

A Lie algebrarep y: (g,+, [ -]) = (gl (V),+, [,-]) = Vis a (left)
U(g)-module

So representation theory is a study of module theory
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ALGEBRA REPRESENTATIONS

Similar machinery from group representations are available for
algebra representations, such as direct products

However a tensor product of algebra representations
p1: (A, +,2) = (Endy(V1),+,0), p2: (A, +,-) — (Endy(V2), +, o) will not
be a representation of A, but rather of A ® A

Algebras for which the tensor product of its representations is again
a representation of itself are called Hopf algebras

Quantum groups are important examples of Hopf algebras

28



End



	Preliminaries
	Representation Theory of Groups
	Representation Theory of Associative Algebras

